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Josephson junction with noise

V. Berdichevsky and M. Gitterman
Department of Physics, Bar-llan University, Ramat Gan 52900, Israel
(Received 30 May 1997

We analyze the voltage-current characteristics of a Josephson junction subject to multiplicative noise with
and without additive noise. An analytical solution was obtained for the dichotomous multiplicative noise as
well as for the forms of the voltage-current characteristics for different noise amplitudes and rates. Nonmono-
tonic behavior was found for the voltage as a function of noise (sttechastic resonanceThe cooperative
action of additive and multiplicative noises results in a voltage larger than that predicted from Ohm’s law. The
ratchet effect and limit cases of weak and strong noises are analyzed in [&1863-651X97)06011-X]

PACS numbes): 05.40:+j

I. INTRODUCTION cillations around its equilibrium point, while for largk the
pendulum is able to execute complete rotations.
The resistively shunted Josephson junction is usually as- Notice that the generic equatid@) appears in a number
sumed small so that the current is uniform over its crosf different applications, such as the theory of charge density
section. The application of Kirchoff's law to such a circuit waves[2], phase locking in electric circui{8], mode lock-

gives the following equation: ing in ring laser gyroscoprdg], motion of fluxons in super-
) 0 d conductorg5], and the penetration of biological channels by
_ . V(t) . ¢ ions[6]. Therefore, our analysis is also applicable to all these
J=J; sin (,D‘f‘?—\]c sin (p+ﬁa, (1) problems.

If an additional periodic forcédue to the ac current or
where the Josephson relatigri{t) = ( 2e/%) fVdt has been radiation is acting on a junction, apart from the dc currdnt
used. We obtained Eq1) in the diffusion(or noninertial, or  then new interesting phenomena occur. One of the most re-
low-frequency limit in which one can neglect the capaci- markable is the lock-in phenomenon of oscillators, which
tance C of the Josephson circuit. Otherwise, the termmanifests itself as horizontal “Shapiro steps” in the voltage-
C(dV/dt)=(C#/2e)d?¢/dt* appears on the right-hand side current characteristic of Josephson junctions. In fact,(&x.
of Eq. (1). We neglect this term in our calculation, thereby defines the zero Shapiro step. One can calculate the sizes of

considering the so-called overdamped case. these steps for a single sinusoid, sit)( by perturbation
One can rewrite Eq(1) in dimensionless form as theory or by numerical solution, while their positions are
given by{¢)=nw, n=1,2,3,... . If the external force has
d_‘P —J—J sin 7 the form of a pulse signal, one can calculate exactly the sizes
dt c ST @ of Shapiro step$5].

. So far we have considered only deterministic quantities.
where the dc currend and the critical currend; are mea-  However, all physical parameters are subject to random per-
sured in units ofz/2eR, whereR is the resistivity of the  turbations. Two typical parameters of superconductors that
junction. Comparison with the microscopic theory giV&$  enter Egs(2) and(3), the phasep, and the absolute valuk

AA A of the order parameter, are also susceptible to fluctuations.
_& = This fact can be taken into account by including random
Je tan , (3 X
A T forces in Eq.(2):

whereA is the absolute value of the order parameter, aigl de _

the correlation length. gt B O] =[Ic+ fo(D]sin(e). 5
The solution of Eq(2) is easily found. The most impor-

tant property of this solution is the voltage-current character- The additive noisef,(t), for example, comes from the

istic of a Josephson junction. The volta_ge across a junction iﬁwermal fluctuations. The influence of these fluctuations on
proportional tode/dt=¢, and we readily find from Ed2)  he yoltage-current characteristiéd) has been considered
that under the assumption of the whitg,6] and the dichotomous
1 (T 0 3<3 [7,8] for_ms of noisef(t) \_/vith fz(t)EQ._ o
(p)=lim = J o(Pdr= ' ¢ (4) In this paper we consider an additional generalization of
T \/.JZ—Jﬁ, J>J.. Eq. (2), along withf,(t), allowing for fluctuationsf,(t) of
the critical current);. The latter are of special importance
Equation(4), shown by the solid line in Fig. 1, can be for high-temperature superconductdkTSC). Many prop-
easily understood in terms of an overdamped driven pendwerties of HTSC can be described in terms of the dynamics of
lum, which is also described by E¢R). When the external flux vortices[9]. Flux pinning in superconducting films is
torqueJ is small, the pendulum can only perform small os-responsible for the high critical currents in these films. The
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FIG. 1. Voltage-current characteristic of a Josephson junction without (enéd line), with additive(dotted ling, or with multiplicative
(dashed lingdichotomous noises. The parameters have the following valyesl, A;=B;=A,=B,=0.9; a==0.1.

different pinning centers, which, in turn, give rise to different while for the colored noise, we shall restrict our consider-
J., are produced by structural disorders in HTSC, such astion to the case of exponentially correlated noise

twinning planes, random distribution of oxygen vacancies,

etc. Experimental manifestations of these phenomena are (FOF(t))~exd —2y[t—t'[]. (8)
low-frequency noise measurements of the fluxon mdtidi ) ) )
and of the voltage noise induced by vortex motjad]. Re- _As the simplest example of colored noise, we consider
sults of both types of measurements suggest the existence $ichotomous noisérandom telegraph signiafor which the

1/f noise and random telegraph signals. Such signals ha/@&ndom variablef(t) can have either of two value#, or
been observed in granular YB2u,0 (YBCO) films at —B. The rate for thegrandomn) transmo_nsAﬂ—B will be
liquid-helium temperature[12] and in BiStCa,_,CuO denoted byy;, anq_the reverse rate will be denoted fy. .
(BSCCOQ films at temperatures just below the critical tem- 1 he latter condition means that we assume an exponential
perature[13]. It is now generally accepted that random tele-function for the switch probability between two states

graph signals can arise from the thermally activated hopping W.—rye tt =12 ©)

of a single magnetic vortex between two distinct pinning i=ve =
sites[14]. wherey;” !is the average time between switches.

theﬁﬂ?rﬁzi{cej(géinitslgﬁ Lc’)l:agr]grjligfr:u?rtr;r;ch'lr'lg%aih(i:grfritlarzt(‘in The correlation function of the dichotomous noise then
P : tf_1as the following form:

be modeled as a two-dimensional network of superconduc
ing grains linked by Josephson coupling. A change in the (FOF(t))=AB ex — (y1+ y)|t—t'[]. (10)
flux is able to change the critical current of a Josephson

junction. Fluctuations between two distinct sites correspond |n order to satisfy the condition of zero mean valé,
to fluctuations of the critical current between two valdes  the following relation between the parameters is implied:
andch. Indirect support for the Josephson mechanism is lent

by the observatiofi15] that random telegraph signals have 72A=71B.
been observed only when the biased current exeeds a critical
threshold, as follows from Ed4).

In this paper we investigate the effect of different types of

(11)

The white-noise limit(7) of the dichotomous nois€9)
can be obtained from the following limits

noise on the current-voltage characteristidsof a Joseph- A2
son junction. A=|B|=A—», y;=y,=y—x, lim 2—=D.
The random quantitie$;(t) and f,(t) have zero mean Y 12
values, (12)
(f1())=(f5(1))=0. 6) This paper is organized as follows. In Sec. Il, we derive

the general Fokker-Planck equations, which correspond to
Their correlation properties can be either “white” or “col- the Langevin equation$5) when both noisesf,(t) and
ored.” For white noise, f,(t), are dichotomous, leaving for the Appendix the deriva-
tion of the Fokker-Planck equations for the more general
(f(H)f(t"))=2Ds(t—t'), (7)  case(8) of the exponentially correlated noises.
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In Secs. Il and IV, we analyze separately additive andwhere
multiplicative noise. Some important differences between
these two cases will be emphasized. The voltage-current g(e)=J—J. sin(e). (16)
characteristics under the concurrent influence of both types
of noise is studied in Sec. V. Section VI contains different It is useful to replace this set of equations by an equiva-
forms of solutions of the Fokker-Planck equation convenientent set of equations for the functions
for the analysis of the limiting cases of weak and strong
noises. Finally, Sec. VII contains our conclusions. P=P1+ P+ P3+Py,

Il. GENERAL EQUATIONS X=A;(P;+Py)—By(Ps+Py),

In order to consider the effects of additive and multipli-
cative dichotomous noise on the dynamics of a Josephson
junction, we first derive the Fokker-Planck equations corre-
sponding to the Langevin equatigh). To this end, we as-
sume that botH ;(t) andf,(t) are dichotomous noise, with
zero mean valué6) and correlator$10) of the form

(f1(t)f1(t"))=A1B; exd — (a;+ ay)|t—t'|],

Y=By(Py+Py)—Ay(P1+P3),
Z:A182P2+A281P3_Blep4_A1A2P1. (17)

These functions are found from E{L5) to satisfy the
following equations:

P d _ dW
(f2(DF2(t))=A,B, exd — (B1+B)[t—t'[]. (13 T gpld(@)P XY sin(g)]== 25,
According to Eq.(11), X
a 17 .
a2A1=alBl, B2A2=BIBZ' (14) E:_ax_ %[g(@)X_F(Al_Bl)X_}—AlBlP_}—Z S|r(§0)]
Equation (5) describes, in fact, four different functions
¢;(t) with equations resulting wheh(t),f,(t) take all pair ﬂ_ v i A .
combinations ofA;,—B; andA,,—B,, respectively. These ot = BY a(p[g("D)Y (A2=B2)Y sin(¢)
functions are random, due to random switches between dif- ]
ferent states. Therefore, their properties can be described by +A;B,P sin(e) +Z],
four  probabilities, Pi(¢,t|A1,Ay),  Py(e,t|A;,B)),
Pa(¢,t|B1,Az), andPy(¢,t|By,B,), where the probability iz _ 9 B
that p<(t)<¢+de is equal toP;(¢,t)de. In general, - (etp)Z a¢[g(¢)z+(A1 B1)Z+AB,Y
such a probability must be calculated as the solution of an ] _
integral equation. However, choosing the switch probability —(A2—B2)Z sin(¢) + A;BoX sin(¢) ], (18

to have a form shown in E@9) simplifies our analysis to the

Markovian form and reduces the integral equations to differWherea=ay+a, and=p,1+ ;. o

ential equations. The four equations @ ¢,t) are derived The variableW in the first of these equations is seen to be
by enumerating the ways in which these functions changé flux, since the functiof is the full probability density. For

with time. For the case of two states, the appropriate procel1® stationary state, the fluk is a constant that, as it will
dure was considered in detail in Rdf7]. We obtain the Now be shown, defines the voltage-current characteristic of

coupled equations for the;(e,t), involving the dynamic the Josephsgtn jun_ction. Let the stationary solutiofil6j be
part defined by Eq(5) and the transition rates shown in Eq. denoted byPi(¢), i=1,2,3,4. Then, the average of the pe-

9), riodic function¢ can be written as follows:
(?Pl J i . m™ A st
ot ﬁ{[g(@_Az sin(¢) +A;]P1}+ B2P2— B1Py (@)= f_ {[9(@)—A;z sin(e) +A]P]

TagPsmarPy, +[9(¢)+B; sin(¢) + AP
9P, +[g(¢)— A, sin(¢) —B,]PS

d
=- ﬁ{[9(¢)+ B, sin(¢)+ AP} + B1P1— B2P;

ot _ .
+[9(¢)+B; sin(¢) — B, ]P3}de
+aPy— Py,
9P d =J [9(@)PS'=YS'sin(¢)+ X dp=27W.
7:_(9_{[9(@—'% Sin(¢)—B1]P3}+ a;P1— a;,P3 o
i (19
+B,P,— B1P3, _ .
PaPaPiPs Therefore, our main goal will be to solve E¢&8) for the
P, stationary casdsetting the time derivatives equal to zgro

J :
e ﬁ{[g(‘PH B sin(¢) —B1]P4}t+ a1Py—asPy under the appropriate conditions of periodicity and normal-
ization. However, before proceeding further let us rewrite
+ B1P3— B5Py4, (15  Egs.(18) for some special cases.
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Symmetric dichotomous noise Y=—D,(d/d¢) [P sin(g)]. Substituting the latter formulas
If the dichotomous noises are symmetric, i&,=|B;|  iNto Eq.(20) and rearranging terms, one finds
and A,=|B,| [i.e., according to Eq(14), a;=a,=«a and dp
B1= B2=pB], then for the stationary case, E¢$8) reduce to a2t [(e)P=WQ(p), (24)
the following form (for simplicity we omit the superscript ¢
“st” for the functions P, X, Y, andZ):
where
W=g(¢@)P+X+Y sin(e), (20) _
g(@)— (D,/2)sin(2¢)
9 He)=="5 b, sif(e) -
—aX= S olg(@)X AP+ Z sin(¢)]=0,  (21) 1
Q(¢)=—[D;+D; sirf(¢)] . (25)
J
2 i —
—BY- ﬁ[g(‘P)YJFAZ sin()P+2]=0, (22 Equation(24) is a generic equation to which we will refer

later on. Using this equation as an example, we illustrate the
J further calculations.
—(at+p)Z—- a—[g(¢)Z+A§Y+A§X sin(¢)]=0. The solution of the first-order differential equati¢®4)
¢ (23) contains one arbitary constant. This constant, as welWas
can be found from the normalization and periodicity condi-

. . tions
White noise
Additional simplification can be achieved by going from G _ _
dichotomous to white noise using Eq12). Denoting _WP(QD)dQD—l and P(—m)=P(m). (26)
Dy=lim,a ... Afl2« and D,=limg » _..A3/28, one ob-
tains from Egs. (21) and (22), X=—-D;dP/de and Finally, one gets for the voltaggp)=2mW

. 2w effgr(z)dz o+2 Urnd
o2 [ [ oo
€ - ¢

-1

(27)

We will return later to the analysis of these formulas.

Ill. ADDITIVE DICHOTOMOUS NOISE

Although the following case was already considered in the literature, we present it here as an example of our approach, and
consider the limiting cases of weak and strong noise. Let us first consider white noise.

White noise

&+2m 1 z
f exp(—— f g(p)dp)dz
& Dl -7

Additive dichotomous noise

For the limiting case of white noise, ER7) reduces td6,7]

. T 1 3 -1
<<p>=2wD1(1—e2“’Dl>[ f B exp[D—1 f ~alp)dp dgj . (28

In the general case of additive dichotomous noise in the absence of multiplicative Agis®{=3=0), one can reduce
Eqg. (18) in the stationary case to the following form:

W=g(e)P+X,
Jd

A simple calculation shows that ER9) can be further reduced to E4) with

9129+ (A1 =By)]teg Q(g)= 9'ta
g[g+(A1—By)]-AB; ¢ g[g+(A;—By)]—AB;’

I'(e)= (30
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FIG. 2. Voltage-current characteristic of a Josephson junction subject to additive dichotomous noise for different values of the noise rate
a between the adiabatiax(—0) and the fast-noisea(— ) limits. The dashed curves refer to each of the two states. Parameteks=te

i.e., the voltage-current characteristigs) as a function ofl will be given again by Eq(27) with T'(¢) andQ(¢) defined by
Eq. (30).

Although the general voltage-current characteristic is quite cumbersome, its limit for slow juqnpa,— 0 (“adiabatic
approximation’), has the following simple form:

0, J-B; and J-A;<J.
2_ 12 2_ 32
_ — + —
| (\/(J By JC+\/(J Ar) JC)/ L) aoBy and 3+A>I,
(@)~ az @ a1 * (&0
JO+A)E—12
M)/(i i, J-B;<J. and J+A;>J..
aq a; @y

These equations simply imply that in the adiabatic approxi-obeyed in our case of nonsymmetric dichotomous noise. One
mation, the total mobility is just an average of those for thecan easily check that the rachet effect disappears in the lim-
two corresponding potentiald7-19. iting case of symmetric noise wheh=0, which results in
The typical current-voltage characteristics of a Josephsothe vanishing of ¢). The latter case occurs both for white
junction subject to additive dichotomous noise are shown byoise, as follows immediately from E¢28), and for sym-
the dotted line in Fig. 1, and—for different values of metric dichotomous noise, since the functidfw) defined in
parameters—in Figs. 2 and 3. As one would expect, the presg. (30) is an odd function fod=0, and, according to Eq.
ence of noise smeared out the sharp threshold behavior dé27), (¢)=0. The rachet effect might have practical applica-
fined in Eq.(4), and this smearing depends on both the noiseion in superconducting electronics as well as in other fields
amplitude and the rate. of physics, chemistry, and biologisome recent references
In Fig. 4, we show the voltagep) as a function of noise can be found if8]).
rate a. This nonmonotonic behavior is a special manifesta- (2) A stochastic resonance phenomern@onmonotonic
tion of stochastic resonand®0], which was found for a behavior of the voltage as a function of noise yatas been
bistable potential by Doering and Gaddw®2]. Note that in  found in the narrow region of the bias current as shown in
our case, this phenomenon occurs in a very narrow region dfig. 4.
the bias curreng. (3) For very large bias curreni>J.., the voltage-current
Several conclusions can be drawn from this analysis. characteristics reduce to Ohm'’s law. Indegfy)~J, and
(1) The voltage() does not vanish even for zero bias this conclusion follows immediately from Eq2), i.e.,
current,J=0. This phenomenon is a special case of the moré¢)=J.
general “rachet effect” for which the net transpdwoltage (4) As will be shown in Sec. VI for white noise, the low-
in our casgis induced by nonequilibrium fluctuations when noise corrections to the voltage-current characteristic are dif-
some asymmetry is present. These general conditions aferent for J>J. and for J<J.. In the former case, these
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2.0 T T

FIG. 3. Same as Fig. 2, but for different values of noise amplitdesParameters aré.=1 ande=0.1.

corrections have an Arrenius-type form, whereas in the latter W=g(¢)P—Y sin(e),
case, the form of polynomials. As one can easily see from
Egs. (24) and (30), this property also occurs in the general —gy— —[g(¢)Y—(A,—B,)Y sin(¢)+A,B, sin(¢)P]
case of additive dichotomous noise. de
=0. (32)

IV. MULTIPLICATIVE DICHOTOMOUS NOISE . . s .
Solving Egs.(32) for the stationary distribution function

In the absence of additive noise, one has to puP.(¢) of a Josephson junction subject to multiplicative
A;=B;=a=0 in Egs.(18), which for a stationary state will noise where the critical current is allowed to take one of two

take the following form: values,J;;=J;.+A, or J;,=J.—B,, one obtains
1.100 T T T T
1.090 4
4
A
- e
A\
1.080 | .
[ J
1.070 L : . :
0.0 1.0 2.0 3.0 4.0 5.0
o

FIG. 4. Voltage{¢) as a function of noise rate for additive dichotomous noise. Parameters Aye B, =0.9 andJ.=1.
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B 1 A sin(@)U (@)1 (¢) }_ CA sin(¢)U~Y(g)
Pl ) =W G TI2Isine) | [9=Je Si@) 19— Jep SiN(@)]|~ BlI—Jur Si@)TI—Jsin@)]’
where
3 ® J—[(Je1+Iep)/2]sins
U(‘P)‘ex‘{zﬁfu (0= 31 SN0~ Iz sin@)]dg}’
4 d (Jer—Jc2)sin(s)
0= ] U 7= [(Jc1+ch>/2]sin<e>}}dg' (34
The probability function(33) is normalizable when

‘J>Jcl1J02- (35)

In this section we assume that the conditi@5) is satisfied.

Using the normalization and periodicity conditiof®6) in order to find constant€ andW in Eq. (33), one obtains the
following voltage-current characteristic:

. 1 1 1 1 1 u+2m
<<P>=| f V_(¢)

1 1 1 (Jo—Je)sin(s)
2 - 2 Al

a+’8fu 203 [(JertIc2)/2]sin(s)}

T, (s)ds

-1
dcp] , (36)

where

1
+
J=Je1 sin(e) I Jez Sin(e)

\I’:((P):[

. w( 1 1 )
X _ﬁfu J_Jclsir\(G)+J—JC2 sin(s) ds |,

-1
8 2 N 21 1 37
ex — .
VI35 P35
For J.;=Jc2, EQ.(36) reduces to Eq(4), as it should.

Analogous to Eq(31), Eq. (36) can be also simplified in the limiting case of slow jumps between the poten@ial€)
(adiabatic approximation

7 T 2 2_ _ 2
<\/J (etAz?  I°=(3=By) )/(iJri)’ 3>J+A, and J>J.-B,

u+2am (Jea—Jc2)sin(s)
ﬁfu Ve S) o e+ Jep)2Isin(s))

a=

ds

B Bo B1 B
(@)~ <—VJZ_(JC_BZ)2)/(i+i>, J<J.+A, and J>J.—B, 38
B2 B1 B
0, J<J+A, and J<J.—B,.

To gain a better understanding of the role of multiplica- small oscillations near one of the minima @§, before re-
tive noise, it would be useful to explore in further detail the turning toV;. Finally, for J<J.;,J¢,, both motions com-
mechanical analogy of our basic equati&). We now re-  prise small oscillations around local minima, which means
gard the critical currend as being a telegraph sign@i-  that{¢)=0.
chotomous noisewhich jumps at random times between the  The typical graphs of the voltage-current characteristics
two fixed values,J;; andJg,. In terms of an overdamped for multiplicative dichotomous noise are shown in Figs. 1, 5,
driven pendulum, a particle moves in the washboard potenand 6. The last two graphs show the voltage-current charac-
tialsV;=—Je—J.; cosfp) andV,=—Jp—J., cosfp). The terictic for different noise rates and amplitudes of the multi-
dynamics of the particle motion are fully defined by the plicative dichotomous noise, respectively. The nonmono-
value of the driving forcel. For J>J.;1,Jc,, the motion  tonic behavior of the mobility¢) as a function of noise rate
along both potentials is a continuous descent, and the mobil is shown in Fig. 7. Just as for additive noise, this stochastic
ity (¢) is defined by both potentials. In the limiting case of resonance occurs in narrow region of the bias curdent
very large J, according to Eq.(4), one gets{¢)=J. If A few characteristic features of these graphs obtained for
Jc1<J<Jc2, the motion downhill will be slower since the multiplicative noise should be mentioned, which are distin-
continuous descent in the potential fie¥] will be inter-  guished from those shown in Figs. 1-4 for additive noise.
rupted by jumps to the second washboard potentig) (1) No ‘“ratchet effects” exist for multiplicative noise
where, for some time, the motion will be represented byeven when the latter is asymmetri©ne can shovj20] that
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2.0

<qi>

FIG. 5. Voltage-current characteristic of a Josephson junction subject to multiplicative dichotomous noise for different noise amplitudes
A,. Parameters arg.=1 andB=1.

the rachet effects occur for multiplicative noise when—in V. JOINT ACTION OF MULTIPLICATIVE
our notation—J.,;>0 butJ.,<0). The vanishing of ¢) for AND ADDITIVE NOISE

J=0 can be seen not only from Fig. 5 but also from the first o -
equation of (32), which for J=0 can be rewritten as For the general case of both multiplicative and additive

W= (Y —J.)sin(¢). The fluxW has to be constant in a sta- noises, one has to solve E{.8). The analytic treatment of
tionary st;te which mean&/=0 and({)=0. the general case is too cumbersome. Let us instead discuss

(2) In contrast to rachets, the stochastic resonance phéhe results for some simple cases.
nomenon exists for multiplicative dichotomous noise, just as
for additive dichotomous noisg@-ig. 7).

(3) While the asymptotic form of the current-voltage char-
acteristic of a Josephson junction subject to additive noise
obeys Ohm'’s law, for multiplicative noise the asymptotic =~ When the transition ratg of the multiplicative symmetric
differs from Ohm’s law, as one can see from Fig. 1. The(A=|BJ) dichotomous noise is very larg8;—, the system
same results follow from our equations, namely, foris subject to the average noise. This means that there is no
J>Jc1,dcos W=J(P)+(Y sin(p)), and (p)=J  multiplicative noise at all, i.e., the equation of moti# has
+27(Y sin(p)), whereY(¢) is to be found from Eqe32).  the following form:

White additive noise and very fast multiplicative
dichotomous noise

<<|;>

FIG. 6. Same as Fig. 5 but for different values of noise rgteBarameters aré.=1 andA,=B,=0.9.
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0.70 i
0.65 - _
A
=3
v
0.60 :
055 1 1 1 1
0.0 1.0 2.0 3.0 40 5.0
B
FIG. 7. Voltage(¢) as a function of noise ratg for multiplicative dichotomous noise. Parameters Age=B,=0.9 andJ.=1.
de White additive noise and multiplicative noise
ar ) Je sine (v, (39 When both noises are white, the following limits apply in

the general equationg20)—(23): A;,A;,a,8— with
wheref(t) is the white noise. The mobility) for Eq.(39)  lim Af/2a=D; and limA328=D,, which immediately

can be calculated exactly, yielding3] yields Eq.(24) for the probability density functioR(¢) and,
finally, one obtains Eq(28) for the voltage( o).
sinh(7J/D) Jo| 72 Figure 8 displayg¢) as a function ofl when both noises
<€0>——D D | (400 are white. It is remarkable that for weak additive noise

(D;=0.02) and strong multiplicative noiseD¢=10), the
voltage-current characteristic for smdllclimbs higher than

wherel,;,p is the modified Bessel function of the first order, that predicted by Ohm's law.

with imaginary argument and imaginary indgx4]. In the
l(léngg;?ncs:? [\év;ﬁn‘]'D<l' Eq. (40) reduces tosee Eq. Multiplicative dichotomous noise and additive white noise
Analogous to the previous case, after excluding the func-
) o) 2J, tions X andZ from Egs.(20)—(23), one obtains the following
(¢)=2sinh—-exp — - (41)  equations foP(¢) and Y(¢):
: . d ? , d :

Each of the two factors in Eq41) has a clear physical BY+ 55 (9Y)—Digz+Azg (P sing)=0, (43
meaning 25]. The Arrhenius exponential rate, expgJ./D), ¢ ¢ ¢
decreases witlD, which makes it easier for a system to
overcome a potential barrier, while the preexponential dpP )
factor—the difference between approach to the left well and W=gP— Dl@ +Ysine. (44)
to the right well—makes the system more homogeneous.

After excludingY from these two equations, one gets a third-

order differential equation foP(¢), which cannot be solved

analytically. The appropriate equations have been analyzed
For very slow processeg— 0, the total voltage is given numerically in Ref[21].

by the average of the two potentidl]:

White additive noise and very slow multiplicative
dichotomous noise

White multiplicative noise and dichotomous additive noise

Taking the limitsA,,B— such that limA3/28=D,,
one obtains from Eqg22) and(23)

) 1
+ 42
()= (B1+ Ba) [,32<€0>JJ P ,31<<P>JJ D] (42
As shown in Ref.[21], Egs. (40)—(42) define the non- q g
monotonic behavior of the currelf=2m(¢) as a function N = : -2 .
of B, manifesting itself by appearing in both the minimum Y Dzdgo(P sine), Z Dzng(X Sin ¢).
and the maximum on the graphs. (45
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FIG. 8. Voltage-current characteristic of Josephson junction subject to both additive and multiplicative white noises of Sreagths

D,, respectively §.=1).

Substitution of the latter formula into Eq&0) and (21)
gives

X+XA2dP+Dd i dX' =0
aX+(gX) de TP2g, S'”<P@( sin ¢) |=0,
(46)

. d .
W=gP+X-D, sin @@(P sin ¢). (47

Again, the third-order differential equation fdP(¢p),

numerical solution. This can be obtained in complete anal-
ogy with those performed in Reff21].

Multiplicative dichotomous noise and additive
dichotomous noise

In this general case one has to solve the four equations of
Eqg. (18), which can be done only numerically. Results of
numerical simulations are shown in Fig. 9 for simultaneous
action of symmetric additive and multiplicative dichotomous
noises. A few interesting comments are necessary:

(&) None of the noises has any influence on the current-

which is obtained from these two equations, allows only avoltage characteristic fa¥+ A;<J. (additive nois¢ and for

20 r
Additive dichotomous noise
A Multiplicative dichotomous noise
=
\ 4
- ¢/ / -
1.0 7
s
s i
Z A
Both noises >
Lo
I,’
0.0 : :
0.0 1.0 2.0
J

FIG. 9. Voltage-current characteristic of a Josephson junction subject to additive dichot@tiad ling, multiplicative dichotomous
(dashed ling and both noisessolid line). The parameters have the following values;=B;=A,=B,=0.5; «= 8—0 (adiabatic case
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0.20 -

<([;>

0.3

1=0.1

0.10 |

v=0.4

0.00 0.20 0.40

J

FIG. 10. Voltage-current characteristic of a Josephson junction subject to nonsymmetric additive and symmetric multiplicative dichoto-
mous noises as a function of noise rateThe ratey defines the transitiod,— — B, andvice versaas well as the transitior-B;—A,,
while the rate of transition from, to — B, is equal to 3. The parameters have the following valuds=0.9; B,=0.45; A,=B,=0.5 and
J.=1.

J<J.—B; (multiplicative noisg¢, while the common action noise are no longer necessary when multiplicative noise is
of both noises changes the current-voltage characteristigresent.
even in these regions.

(b) The “ratchet effect” (appearance of net voltage)
in the absence of driving current=0) exists for nonsym-
metric additive dichotomous noise even in the presence of In this section we develop a convenient means of analysis
symmetric multiplicative dichotomous noise, as one can seér some limiting cases of the formulas, we derived.
from Figs. 10 and 11. Moreover, multiplicative noise eases The generic equatiof24), which we use for the analysis
the criteria for the onset of the ratchet effect. The conditionsf different types of noise, is a first-order differential equa-
J>A; andJ>B, that appear in the absence of multiplicative tion with periodic coefficients of the following form:

VI. LIMIT CASES OF WEAK AND STRONG NOISE

0.00 !
0.0 0.2 0.4 0.

=Y

FIG. 11. Voltage{ ) in the absence of the driving forcés= 0 (“ratchet effect”) as a function of noise ratg. Parameters are the same
as in Fig. 10.



56 JOSEPHSON JUNCTION WITH NOISE 6351

P=V(g)P'+Wd(¢)=V()P'+Q(¢), (48  OF

where here and in the discussion that follows, the prime de-

notes the derivative with respect ta In some cases the 1
functions¥(¢) and ®(¢) have singularities, or the function = .
W¥(¢p) vanishes at some. In the latter case, one has to use % PA-V' +(¥v¥") —[T(PTP)] +--)

singular perturbation theory. However, the functi®fe)
must be periodic and normalized function @f We use this
fact to simplify some series expansions and approximations.

Let us integrate Ec(48) over a period and continue inte-  This form of solution of Eq(48) is very convenient when

(51)

gration by parts on the right side of this equation: the function¥(¢) in Eq. (48) vanishes at some and one has
to use singular perturbation theory. However, such an expan-
1= 35 Q+ 3@ PP = fﬁ Q- % QY — #; Y\ p’'=... . sion is not convenient when the coefficient in frontRfis

equal to zero. Then, the functiodsand¥ have singularities
(49 and Eq.(50) is of no use. For these cases we use another

If we define the operato®(¢)=(¥¢)’, we obtain representation of the solution for EGI8) by rewriting Eq.
(48) in the following form:

1= fﬁ Q[1-0y(1)+0y(Oy(1))—---1.
O(e)

Taking into account thatWd(¢)=Q(¢), one can rewrite P'— D P=WQ(¢). (52
this operator series in a more compact form
-1
W=+ % (DH 1 }(1) ] (50) Using periodicity and normalization d? yields the follow-
1-0Oy ing form of solution for the curreniv:

-1

de (53

.

If @ is a periodic function plus constant, the valuef@fz”@(z)dzwill not depend onp, and the last integral reduces to some
constantk. Then Eq.(53) is simplified,

2m e(1D) [§6(2)dz ot 2m o o
-1 P (2)dz
fo e~ (1/D)f$*2”®<z>dz_l (L Q(fe 0 dé

-1

W= (e k/D_l)[ fzwe(llD)ng)(z)dz( J"P+ZWQ(§)E— (lﬂ))fg@)(z)dzdg do (54)
0 ¢

In the limit of D— 0, one can use the method of steepest descent for calculating the integrals(®3tgad(54), which gives

_ (e~ ¥P_1) |07 (x1)0" (X,)] e(l/D)Iiz(Z)dz
1 1

w 27DQ(Xy)

(55

wherex; andx, are two neighboring zeros &¥(x), wherex,>x;, and®’(x;) <0, ®'(x,)>0. Note that Eq(55) cannot be
expanded in series, in contrast to E§0). Finally, since € ¥P—1)~—1 for D—0, one obtains

VO (x1)0' (x5)] x
—— (l/D)fX2®(Z)dZ
w 52D00G) © *0(2)dz (56)

If ®(z) is of order zero irD, one can also consider the opposite limiting cas® ef o, rewriting Eq.(54) in the form
o 2 m -1
7| 1 @ o+2m 1 3
> f = f 0(z)dz f Q&) - = f 0(z)dz
nm=o0 Jo |D Jo P D Jo

w3y

df)dcp
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Equation(57) gives the expansion of the currew for

V. BERDICHEVSKY AND M. GITTERMAN

largeD. If O is a periodic function plus some constant, the

first term of this expansion is

[2"0(z)dz

"~ 2aDf3Q(z)dZ 58

Applications of the derived formulas will be illustrated by

the examples of one and two white noises.

White additive noise

The general formul&28) can be simplified for weak and
strong noise strengths. FBr—«, one obtains

3

_ J2(1632+53%)
<‘P>~‘] 1_2D2+ < : te

3204

(59

Notice that the correction terms are proportionaldg/D)?,

which means that for large additive white noise, the correc-

tion terms to Ohm’s law{¢)~J, are very small.

The voltage-current characteristic is of greatest interest
for weak noise. Following the general approach given at th

beginning of this section, fob— 0, all calculations have to
be separated into two parts. In the cdseJ., we can use
Eq. (50) to obtain the first correction to E¢4):

oy~ TP= 2+ D22 Jo+4%
<QD>~ J=Jc+D JCS(JTJz)S/Z"F'“ for J>J..
c

(60)

Equation(60) contains corrections to E¢4) that are propor-
tional to (DJ.)?, similar to the corrections of orded{/D)?

in Eg. (59). However, the situation is quite different for
J<J.. We now have to use Eg&5) and (56), rather than
Eq. (50). In terms of the characteristic frequencies

w=\J:—3?%, w,=2[w,;—J arcco$d/J)] (61)
the weak noise correction is
(p)~we” 2P for J<J.. (62)

56
(@)~ \I*= 3
JA+43202+ R4+ 10R PI2+ 4R2J2)2
D2 2\5/2 '
8(J%—J%)°
(63

whereD,=RD;, andR is assumed to be of order unity.
For the Arrhenius region]<J., the smallD corrections
to the voltage-current characteristic have the following form:

. - o +&]m b/DVR(I+R)
<g0>~wle_ (2J/DV1+R)arctaiJV1+R/wq) = g ,
(64)
wherew; and ¢ are defined by
w1=J2-2?,

%everal differences between E@83) and (64) and the ap-
propriate equation&0) and(62) in the absence of the mul-
tiplicative noise are worthy of notice.

Firstly, the boundary between the flow region and the
Arrhenius region, which in the former case was simply de-
fined byJ=J., becomes more complicated and, in fact, the
boundary between the applicability of Ed63) and (64) is
defined byJ —J. sin(¢)— (DR/2)sin(2p)=0. The second dif-
ference between Eq&0) and(63) is that in the latter equa-
tion the correction terms do not vanish fiy— 0, which may
have much to do with the presence of multiplicative noise.
One can also find the limiting form of Eq27) for large
noise strengthD — oo:

. 2J
o~ RLSZdX/ VIR SIP(0) ]2

One can see from this equation that the current-voltage
characteristic is changing drastically due to the presence of
multiplicative white noise. Instead of small corrections to

(66)

Note that Eq(62) has been obtained under the condition of Ohm’s law due to additive white noise, E§9), multiplica-

smallD, so thatJ andJ, are larger thaD. ForJ<D, Eg.

tive noise leads to significant changes even in leading order.

(62) gives an incorrect result whereas the correct result id Nis change can be essential for large valueRofor ex-

(@)=0.

We conclude, therefore, that in two regiorssJ. and
J>J., the corrections for smalD have different forms,
changing from an exponential forr62) to a polynomial

ample, for R=500, the influence of multiplicative noise
leads to{ ¢) ~2.37], which explain the strong slope in Fig. 8
for D;=0.02 andD,=10. For smaller values &, the slope
is approaching that of Ohm’s law, and finally, fB=0, we

form (60). Such behavior of the solution of the nonlinear come back to Ohm’s law.

equation(1) is a manifestation of the change from flow-type

motion to Arrhenius-type jumps.

White additive noise and multiplicative noise

VII. CONCLUSIONS

Our main results concern the voltage-current characteris-
tics of a Josephson junction subject to additive and multipli-

Analogous to the calculations performed above, one cagative noises, which we have chosen as dichotomous noises,

find the limiting forms of Eqs(27) for small and large noise
strengthsD,; and D,. For smallD, the corrections have
different forms in the two region3<J; andJ>J.. ForJ>
J. (“the flow region”)

although in the Appendix we present the Fokker-Planck

equations for the more general case of exponentially corre-
lated noises. Results of our investigation can be summarized
in the following way:



56 JOSEPHSON JUNCTION WITH NOISE 6353

Multiplicative noise alone (random distribution of critical tween the flow-type and Arrhenius-type regions shifted to
currents or some other external noises J<J..

(@) We obtained an analytic solution for the voltage-
current characteristitEq. (40)]. APPENDIX

(b) Asymptotic behavior of the voltage-current character- . .
istic for J— is different from Ohm'’s law(Fig. 1). Here we present a slightly more general set of stochastic

(c) The voltage increases with noise amplitude for smallauations corresponding to the Langevin equatirior any _
currents. However, for larger currents, the voltage decreasé¥© independent exponentially correlated zero-mean noises:
with noise amplituddFig. 5).

N\ 2 N\t —¢
(d) Near this transient region, the voltage turns out to be a (fiOfit")=of exd —\ilt—t'[], (A1)
nonmonotonic function of the noise rat€ig. 7), which is ¢ —o A2
one of the manifestations of stochastic resonance. (fi(1))=0, (A2)
(e) In contrast to additive noise, even nonsymmetric mul- Py
tiplicative noise is unable to produce the “ratchet effect” (fo(OF(t"))=0. (A3)

(net voltage in the absence of biased current The probability density functio®(¢,t) is defined as the

- _ _ ) statistical average of the Dirac function
Additive noise alone(thermal or some other internal noisg p(e.)=38(e—o(t)), namely, P(¢.t)=(p(o,t)) [19].
This case was analyzed previously,6—8. We consid- Then, the stochastic Liouville equation has the following
ered a relationship between the form of the current-voltagdéorm:
characteristic and noise rate and amplitude, and found the
following. O L lgle)+ -ty sine)]p),  (Ad)
(a) The voltage-current characteristics for different noise . de 9le) T2 sinte) ey,
rates are confined between the two limits of fast and slow ] ] )
noises(Fig. 2 and occupy a small amount of space betweervhere g(¢) was defined in Eq(16), and the appropriate
the voltage-current characteristics of two separate states. Tte@kker-Planck equation is
latter (adiabati¢ case can be calculated analyticallzq. P
(D] p— - i
(b) The stochastic resonan¢te nonmonotonic behavior P f7¢[g((P)P+<pfl> {pf2)sin()]. (AS)

of voltage as a function of noise rateccurs in a wider range L )
of currents than that for multiplicative noi¢Bigs. 2 and 3~ Multiplying Eq. (A4) by f,,f, andf,f;, respectively, and

(c) Just as for multiplicative noise, the voltage increaseveraging the resulting equations, one obtains the Fokker-
with noise amplitude for small current and decreases fof12nck equations for the functions,

large curreniFig. 3. X=(pfy), Y=(pfy), Z=(pfify). (A6)

Simultaneous action of additive and multiplicative noises The time derivatives of these functions, which appear on

(a) Two dichotomous noises are able to produce voltagef€ Ieft-hand side of the Fokker-Planck equations, can be
for small currents(Fig. 9 while each by itself is unable to Simplified for the random functiong\1) by use of the well-
give non-zero voltage in this region of current. known Shapiro-Logunov formulgd6]:

(b) The cooperative effect mentioned above occurs also d
for two white noises. Moreover, the resulting voltage can be — - _ _
larger than that in Ohm’s law if the additive noise is weak 5t<a(t)¢[a]> <a(t) dt¢[a]> Ma()elal)
and the multiplicative noise is stror(§ig. 8. (A7)

(c) The simultaneous action of two noises can be largef

than each by itself in some region of the voItage-curren'éNhere(P[a] 's a functional of the random valug(t), and the

characteristic, but smaller in other regions. average is performed over the di_stributiona(ft). :
(d) The “ratchet effect” occurs for nonsymmetric addi- Finally, we come to the following set of equations:
tive noise in the presence of multiplicative noigégs. 10 P=_[p +£X—Y si ,
and 1). The latter eases the requirments for the onset of [Pg(e) el
ratchets. : . ,
X==N1X=[g(e)X+(pf)—Z sin(¢)]",
Analysis of limiting cases of w.eak and strong noises . Y= —)\ZY—[g(cp)Y—(pf%)Sin(q:)%—Z]’,
(@ We suggested a convenient method of analysis of
these limiting cases when the Fokker-Planck equations con-z— —(\,+ M) Z—[g(@)Z+(pf2f,)—(pfif2)sin(e)]’.
tain singularities. (A8)
(b) The smallb corrections to the voltage generated by . _
additive noise have a polynomial form in the flow-type re- The system of equationgA8) contains the averages
gion, J>J., and an exponential form in the Arrhenius-type (pf§f2> and<pflf§> and, therefore, this system is not closed.
region,J<<J.. One has to use some decoupling procedure. Another possi-
(c) The same effect occurs when both additive and multi-bility that we demonsrate in this work is to consider the
plicative white noises are present, with the boundary bespecial case of the two-state Markov process. For symmetric
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dichotomous noisd?(t)=AZ? and f3(t)=A3 and Eq.(A8) (pf2f)=A1B,Y+(A,—By)Z,
reduces to Eqs(20)—(23). For nonsymmetric dichotomous
noise one can easily obtain

f2f,)=A,B, X+ (A,—B,)Z. A9
<pf§>:A]_B]_P+(A1_B]_)X1 <p 2 l> 22 ( 2 2) ( )

(pt5)=A,B,P+(A,~B,)Y, Substitution of Eq(A9) into Eq. (A8) gives Eq.(18).
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