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Josephson junction with noise

V. Berdichevsky and M. Gitterman
Department of Physics, Bar-Ilan University, Ramat Gan 52900, Israel

~Received 30 May 1997!

We analyze the voltage-current characteristics of a Josephson junction subject to multiplicative noise with
and without additive noise. An analytical solution was obtained for the dichotomous multiplicative noise as
well as for the forms of the voltage-current characteristics for different noise amplitudes and rates. Nonmono-
tonic behavior was found for the voltage as a function of noise rate~stochastic resonance!. The cooperative
action of additive and multiplicative noises results in a voltage larger than that predicted from Ohm’s law. The
ratchet effect and limit cases of weak and strong noises are analyzed in detail.@S1063-651X~97!06011-X#

PACS number~s!: 05.40.1j
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I. INTRODUCTION

The resistively shunted Josephson junction is usually
sumed small so that the current is uniform over its cr
section. The application of Kirchoff’s law to such a circu
gives the following equation:

J5Jc sin w1
V~ t !

R
5Jc sin w1

\

2eR

dw

dt
, ~1!

where the Josephson relationw(t)5( 2e/\) *Vdt has been
used. We obtained Eq.~1! in the diffusion~or noninertial, or
low-frequency! limit in which one can neglect the capac
tance C of the Josephson circuit. Otherwise, the te
C(dV/dt)[(C\/2e)d2w/dt2 appears on the right-hand sid
of Eq. ~1!. We neglect this term in our calculation, there
considering the so-called overdamped case.

One can rewrite Eq.~1! in dimensionless form as

dw

dt
5J2Jc sin w, ~2!

where the dc currentJ and the critical currentJc are mea-
sured in units of\/2eR, whereR is the resistivity of the
junction. Comparison with the microscopic theory gives@1#

Jc5
e\D

l
tanhS D

T D , ~3!

whereD is the absolute value of the order parameter, andl is
the correlation length.

The solution of Eq.~2! is easily found. The most impor
tant property of this solution is the voltage-current charac
istic of a Josephson junction. The voltage across a junctio
proportional todw/dt[ẇ, and we readily find from Eq.~2!
that

^ẇ&[ lim
T→`

1

T E
0

T

w~t!dt5H 0, J,Jc

AJ22Jc
2, J.Jc.

~4!

Equation~4!, shown by the solid line in Fig. 1, can b
easily understood in terms of an overdamped driven pen
lum, which is also described by Eq.~2!. When the externa
torqueJ is small, the pendulum can only perform small o
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cillations around its equilibrium point, while for largeJ, the
pendulum is able to execute complete rotations.

Notice that the generic equation~2! appears in a numbe
of different applications, such as the theory of charge den
waves@2#, phase locking in electric circuits@3#, mode lock-
ing in ring laser gyroscopres@4#, motion of fluxons in super-
conductors@5#, and the penetration of biological channels
ions@6#. Therefore, our analysis is also applicable to all the
problems.

If an additional periodic force~due to the ac current o
radiation! is acting on a junction, apart from the dc currentJ,
then new interesting phenomena occur. One of the mos
markable is the lock-in phenomenon of oscillators, whi
manifests itself as horizontal ‘‘Shapiro steps’’ in the voltag
current characteristic of Josephson junctions. In fact, Eq.~4!
defines the zero Shapiro step. One can calculate the siz
these steps for a single sinusoid, sin(vt), by perturbation
theory or by numerical solution, while their positions a
given by ^ẇ&5nv, n51,2,3, . . . . If the external force ha
the form of a pulse signal, one can calculate exactly the s
of Shapiro steps@5#.

So far we have considered only deterministic quantiti
However, all physical parameters are subject to random
turbations. Two typical parameters of superconductors
enter Eqs.~2! and~3!, the phasew, and the absolute valueD
of the order parameter, are also susceptible to fluctuati
This fact can be taken into account by including rando
forces in Eq.~2!:

dw

dt
5@J1 f 1~ t !#2@Jc1 f 2~ t !#sin~w!. ~5!

The additive noisef 1(t), for example, comes from the
thermal fluctuations. The influence of these fluctuations
the voltage-current characteristics~4! has been considere
under the assumption of the white@1,6# and the dichotomous
@7,8# forms of noisef 1(t) with f 2(t)[0.

In this paper we consider an additional generalization
Eq. ~2!, along with f 1(t), allowing for fluctuationsf 2(t) of
the critical currentJc . The latter are of special importanc
for high-temperature superconductors~HTSC!. Many prop-
erties of HTSC can be described in terms of the dynamic
flux vortices @9#. Flux pinning in superconducting films i
responsible for the high critical currents in these films. T
6340 © 1997 The American Physical Society



56 6341JOSEPHSON JUNCTION WITH NOISE
FIG. 1. Voltage-current characteristic of a Josephson junction without noise~solid line!, with additive~dotted line!, or with multiplicative
~dashed line! dichotomous noises. The parameters have the following values:Jc51, A15B15A25B250.9; a5b50.1.
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different pinning centers, which, in turn, give rise to differe
Jc , are produced by structural disorders in HTSC, such
twinning planes, random distribution of oxygen vacanci
etc. Experimental manifestations of these phenomena
low-frequency noise measurements of the fluxon motion@10#
and of the voltage noise induced by vortex motion@11#. Re-
sults of both types of measurements suggest the existen
1/f noise and random telegraph signals. Such signals h
been observed in granular YBa2Cu3O ~YBCO! films at
liquid-helium temperature@12# and in BiSrxCa12xCuO
~BSCCO! films at temperatures just below the critical tem
perature@13#. It is now generally accepted that random te
graph signals can arise from the thermally activated hopp
of a single magnetic vortex between two distinct pinni
sites@14#.

Another explanation for the fluctuating critical current
the intrinsic Josephson mechanism. The HTSC thin film
be modeled as a two-dimensional network of supercond
ing grains linked by Josephson coupling. A change in
flux is able to change the critical current of a Joseph
junction. Fluctuations between two distinct sites correspo
to fluctuations of the critical current between two valuesJc1

andJc2
. Indirect support for the Josephson mechanism is

by the observation@15# that random telegraph signals ha
been observed only when the biased current exeeds a cr
threshold, as follows from Eq.~4!.

In this paper we investigate the effect of different types
noise on the current-voltage characteristics~4! of a Joseph-
son junction.

The random quantitiesf 1(t) and f 2(t) have zero mean
values,

^ f 1~ t !&5^ f 2~ t !&50. ~6!

Their correlation properties can be either ‘‘white’’ or ‘‘co
ored.’’ For white noise,

^ f ~ t ! f ~ t8!&52Dd~ t2t8!, ~7!
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while for the colored noise, we shall restrict our consid
ation to the case of exponentially correlated noise

^ f ~ t ! f ~ t8!&;exp@22gut2t8u#. ~8!

As the simplest example of colored noise, we consi
dichotomous noise~random telegraph signal! for which the
random variablef (t) can have either of two values,A or
2B. The rate for the~random! transitionsA→2B will be
denoted byg1 , and the reverse rate will be denoted byg2 .

The latter condition means that we assume an expone
function for the switch probability between two states

C i5g ie
2g i t, i 51,2, ~9!

whereg i
21 is the average time between switches.

The correlation function of the dichotomous noise th
has the following form:

^ f ~ t ! f ~ t8!&5AB exp@2~g11g2!ut2t8u#. ~10!

In order to satisfy the condition of zero mean value~6!,
the following relation between the parameters is implied:

g2A5g1B. ~11!

The white-noise limit~7! of the dichotomous noise~9!
can be obtained from the following limits

A5uBu[D→`, g15g2[g→`, lim
D2

2g
5D.

~12!

This paper is organized as follows. In Sec. II, we deri
the general Fokker-Planck equations, which correspond
the Langevin equations~5! when both noises,f 1(t) and
f 2(t), are dichotomous, leaving for the Appendix the deriv
tion of the Fokker-Planck equations for the more gene
case~8! of the exponentially correlated noises.
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In Secs. III and IV, we analyze separately additive a
multiplicative noise. Some important differences betwe
these two cases will be emphasized. The voltage-cur
characteristics under the concurrent influence of both ty
of noise is studied in Sec. V. Section VI contains differe
forms of solutions of the Fokker-Planck equation conveni
for the analysis of the limiting cases of weak and stro
noises. Finally, Sec. VII contains our conclusions.

II. GENERAL EQUATIONS

In order to consider the effects of additive and multip
cative dichotomous noise on the dynamics of a Joseph
junction, we first derive the Fokker-Planck equations cor
sponding to the Langevin equation~5!. To this end, we as-
sume that bothf 1(t) and f 2(t) are dichotomous noise, with
zero mean value~6! and correlators~10! of the form

^ f 1~ t ! f 1~ t8!&5A1B1 exp@2~a11a2!ut2t8u#,

^ f 2~ t ! f 2~ t8!&5A2B2 exp@2~b11b2!ut2t8u#. ~13!

According to Eq.~11!,

a2A15a1B1 , b2A25b1B2 . ~14!

Equation ~5! describes, in fact, four different function
w i(t) with equations resulting whenf 1(t), f 2(t) take all pair
combinations ofA1 ,2B1 andA2 ,2B2 , respectively. These
functions are random, due to random switches between
ferent states. Therefore, their properties can be describe
four probabilities, P1(w,tuA1 ,A2), P2(w,tuA1 ,B2),
P3(w,tuB1 ,A2), and P4(w,tuB1 ,B2), where the probability
that w,w(t)<w1dw is equal toPi(w,t)dw. In general,
such a probability must be calculated as the solution of
integral equation. However, choosing the switch probabi
to have a form shown in Eq.~9! simplifies our analysis to the
Markovian form and reduces the integral equations to diff
ential equations. The four equations forPi(w,t) are derived
by enumerating the ways in which these functions cha
with time. For the case of two states, the appropriate pro
dure was considered in detail in Ref.@7#. We obtain the
coupled equations for thePi(w,t), involving the dynamic
part defined by Eq.~5! and the transition rates shown in E
~9!,

]P1

]t
52

]

]w
$@g~w!2A2 sin~w!1A1#P1%1b2P22b1P1

1a2P32a1P1 ,

]P2

]t
52

]

]w
$@g~w!1B2 sin~w!1A1#P2%1b1P12b2P2

1a2P42a1P2 ,

]P3

]t
52

]

]w
$@g~w!2A2 sin~w!2B1#P3%1a1P12a2P3

1b2P42b1P3 ,

]P4

]t
52

]

]w
$@g~w!1B2 sin~w!2B1#P4%1a1P22a2P4

1b1P32b2P4 , ~15!
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where

g~w!5J2Jc sin~w!. ~16!

It is useful to replace this set of equations by an equi
lent set of equations for the functions

P5P11P21P31P4 ,

X5A1~P11P2!2B1~P31P4!,

Y5B2~P21P4!2A2~P11P3!,

Z5A1B2P21A2B1P32B1B2P42A1A2P1 . ~17!

These functions are found from Eq.~15! to satisfy the
following equations:

]P

]t
52

]

]w
@g~w!P1X2Y sin~w!#[2

]W

]w
,

]X

]t
52aX2

]

]w
@g~w!X1~A12B1!X1A1B1P1Z sin~w!#

]Y

]t
52bY2

]

]w
@g~w!Y2~A22B2!Y sin~w!

1A2B2P sin~w!1Z#,

]Z

]t
52~a1b!Z2

]

]w
@g~w!Z1~A12B1!Z1A1B1Y

2~A22B2!Z sin~w!1A2B2X sin~w!#, ~18!

wherea5a11a2 andb5b11b2 .
The variableW in the first of these equations is seen to

a flux, since the functionP is the full probability density. For
the stationary state, the fluxW is a constant that, as it wil
now be shown, defines the voltage-current characteristic
the Josephson junction. Let the stationary solution of~15! be
denoted byPi

st(w), i 51,2,3,4. Then, the average of the p
riodic function ẇ can be written as follows:

^ẇ&5E
2p

p

$@g~w!2A2 sin~w!1A1#P1
st

1@g~w!1B2 sin~w!1A1#P2
st

1@g~w!2A2 sin~w!2B1#P3
st

1@g~w!1B2 sin~w!2B1#P4
st%dw

5E
2p

p

@g~w!Pst2Yst sin~w!1Xst#dw52pW.

~19!

Therefore, our main goal will be to solve Eqs.~18! for the
stationary case~setting the time derivatives equal to zer!
under the appropriate conditions of periodicity and norm
ization. However, before proceeding further let us rewr
Eqs.~18! for some special cases.
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Symmetric dichotomous noise

If the dichotomous noises are symmetric, i.e.,A15uB1u
and A25uB2u @i.e., according to Eq.~14!, a15a2[a and
b15b2[b#, then for the stationary case, Eqs.~18! reduce to
the following form ~for simplicity we omit the superscrip
‘‘st’’ for the functions P, X, Y, andZ!:

W5g~w!P1X1Y sin~w!, ~20!

2aX2
]

]w
@g~w!X1A1

2P1Z sin~w!#50, ~21!

2bY2
]

]w
@g~w!Y1A2

2 sin~w!P1Z#50, ~22!

2~a1b!Z2
]

]w
@g~w!Z1A1

2Y1A2
2X sin~w!#50.

~23!

White noise

Additional simplification can be achieved by going fro
dichotomous to white noise using Eq.~12!. Denoting
D15 lima,A1→` A1

2/2a and D25 limb,A2→` A2
2/2b , one ob-

tains from Eqs. ~21! and ~22!, X52D1 dP/dw and
Y52D2 (d/dw) @P sin(w)#. Substituting the latter formulas
into Eq. ~20! and rearranging terms, one finds

dP

dw
1G~w!P5WV~w!, ~24!

where

G~w!52
g~w!2 ~D2/2!sin~2w!

D11D2 sin2~w!
,

V~w!52@D11D2 sin2~w!#21. ~25!

Equation~24! is a generic equation to which we will refe
later on. Using this equation as an example, we illustrate
further calculations.

The solution of the first-order differential equation~24!
contains one arbitary constant. This constant, as well asW,
can be found from the normalization and periodicity con
tions

E
2p

p

P~w!dw51 and P~2p!5P~p!. ~26!

Finally, one gets for the voltagêẇ&52pW
ach, and
^ẇ&52pF E
0

2p e2*0
wG~z!dz

e*w
w12pG~z!dz21

S E
w

w12p

V~u!e*0
uG~z!dzduD dwG21

. ~27!

We will return later to the analysis of these formulas.

III. ADDITIVE DICHOTOMOUS NOISE

Although the following case was already considered in the literature, we present it here as an example of our appro
consider the limiting cases of weak and strong noise. Let us first consider white noise.

White noise

For the limiting case of white noise, Eq.~27! reduces to@6,7#

^ẇ&52pD1~12e2pJ/D1!H E
2p

p

expF 1

D1
E

2p

j

g~r!drGF E
j

j12p

expS 2
1

D1
E

2p

z

g~r!dr D dzGdjJ 21

. ~28!

Additive dichotomous noise

In the general case of additive dichotomous noise in the absence of multiplicative noise (A25B25b50), one can reduce
Eq. ~18! in the stationary case to the following form:

W5g~w!P1X,

05aX1
]

]w
@g~w!X1~A12B1!X1A1B1P#. ~29!

A simple calculation shows that Eq.~29! can be further reduced to Eq.~24! with

G~w!5
g8@2g1~A12B1!#1ag

g@g1~A12B1!#2A1B1
and V~w!5

g81a

g@g1~A12B1!#2A1B1
, ~30!
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i.e., the voltage-current characteristics^ẇ& as a function ofJ will be given again by Eq.~27! with G~w! andV~w! defined by
Eq. ~30!.

Although the general voltage-current characteristic is quite cumbersome, its limit for slow jumps,a1 , a2→0 ~‘‘adiabatic
approximation’’!, has the following simple form:

^ẇ&;5
0, J2B1 and J2A1,Jc

SA~J2B1!22Jc
2

a2
1

A~J1A1!22Jc
2

a1
D Y S 1

a1
1

1

a2
D , J2B1 and J1A1.Jc

SA~J1A1!22Jc
2

a1
D Y S 1

a1
1

1

a2
D , J2B1,Jc and J1A1.Jc.

~31!

FIG. 2. Voltage-current characteristic of a Josephson junction subject to additive dichotomous noise for different values of the n
a between the adiabatic (a→0) and the fast-noise (a→`) limits. The dashed curves refer to each of the two states. Parameters areJc51
andA15B150.9.
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These equations simply imply that in the adiabatic appro
mation, the total mobility is just an average of those for t
two corresponding potentials@17–19#.

The typical current-voltage characteristics of a Joseph
junction subject to additive dichotomous noise are shown
the dotted line in Fig. 1, and—for different values
parameters—in Figs. 2 and 3. As one would expect, the p
ence of noise smeared out the sharp threshold behavio
fined in Eq.~4!, and this smearing depends on both the no
amplitude and the rate.

In Fig. 4, we show the voltagêẇ& as a function of noise
rate a. This nonmonotonic behavior is a special manifes
tion of stochastic resonance@20#, which was found for a
bistable potential by Doering and Gadoua@22#. Note that in
our case, this phenomenon occurs in a very narrow regio
the bias currentJ.

Several conclusions can be drawn from this analysis.
~1! The voltage^ẇ& does not vanish even for zero bia

current,J50. This phenomenon is a special case of the m
general ‘‘rachet effect’’ for which the net transport~voltage
in our case! is induced by nonequilibrium fluctuations whe
some asymmetry is present. These general conditions
i-
e

n
y

s-
e-
e

-

of

e

re

obeyed in our case of nonsymmetric dichotomous noise. O
can easily check that the rachet effect disappears in the
iting case of symmetric noise whenJ50, which results in
the vanishing of̂ ẇ&. The latter case occurs both for whit
noise, as follows immediately from Eq.~28!, and for sym-
metric dichotomous noise, since the functionG~w! defined in
Eq. ~30! is an odd function forJ50, and, according to Eq
~27!, ^ẇ&50. The rachet effect might have practical applic
tion in superconducting electronics as well as in other fie
of physics, chemistry, and biology~some recent reference
can be found in@8#!.

~2! A stochastic resonance phenomenon~nonmonotonic
behavior of the voltage as a function of noise rate! has been
found in the narrow region of the bias current as shown
Fig. 4.

~3! For very large bias current,J@Jc , the voltage-current
characteristics reduce to Ohm’s law. Indeed,g(w)'J, and
this conclusion follows immediately from Eq.~2!, i.e.,
^ẇ&5J.

~4! As will be shown in Sec. VI for white noise, the low
noise corrections to the voltage-current characteristic are
ferent for J.Jc and for J,Jc . In the former case, thes
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FIG. 3. Same as Fig. 2, but for different values of noise amplitudesA1 . Parameters areJc51 anda50.1.
tt
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corrections have an Arrenius-type form, whereas in the la
case, the form of polynomials. As one can easily see fr
Eqs. ~24! and ~30!, this property also occurs in the gener
case of additive dichotomous noise.

IV. MULTIPLICATIVE DICHOTOMOUS NOISE

In the absence of additive noise, one has to
A15B15a50 in Eqs.~18!, which for a stationary state wil
take the following form:
er

l

t

W5g~w!P2Y sin~w!,

2bY2
d

dw
@g~w!Y2~A22B2!Y sin~w!1A2B2 sin~w!P#

50. ~32!

Solving Eqs.~32! for the stationary distribution function
Pst(w) of a Josephson junction subject to multiplicativ
noise where the critical current is allowed to take one of t
values,Jc15Jc1A2 or Jc25Jc2B2 , one obtains
FIG. 4. Voltage^ẇ& as a function of noise ratea for additive dichotomous noise. Parameters areA15B150.9 andJc51.
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Pst~w!5WF 1

J2 @~Jc11Jc2!/2#sin~w!
1

D sin~w!U21~w!I ~w!

@J2Jc1 sin~w!#@J2Jc2 sin~w!#G2
CD sin~w!U21~w!

b@J2Jc1 sin~w!#@J2Jc2sin~w!#
, ~33!

where

U~w!5expF2bE
u

w J2@~Jc11Jc2!/2#sin§

@J2Jc1 sin~§!#@J2Jc2 sin~§!#
d§G ,

I ~w!5E
u

w

U~§!
d

d§ F ~Jc12Jc2!sin~§!

2$J2 @~Jc11Jc2!/2#sin~§!%Gd§. ~34!

The probability function~33! is normalizable when

J.Jc1 ,Jc2. ~35!

In this section we assume that the condition~35! is satisfied.
Using the normalization and periodicity conditions~26! in order to find constantsC and W in Eq. ~33!, one obtains the

following voltage-current characteristic:

^ẇ&5H 1

2

1

AJ22Jc1
2

1
1

2

1

AJ22Jc2
2

2
1

4p E
u

u12p

C2~w!Fa1bE
u

w ~Jc12Jc2!sin~§!

2$J2 @~Jc11Jc2!/2#sin~§!%
C1~§!d§GdwJ 21

, ~36!

where

C6~w!5F 1

J2Jc1 sin~w!
6

1

J2Jc2 sin~w!GexpF6bE
u

wS 1

J2Jc1sin~§!
1

1

J2Jc2 sin~§! Dd§G ,
a5FbE

u

u12p

C1~§!
~Jc12Jc2!sin~§!

2$J2 @~Jc11Jc2!/2#sin~§!%
d§G H expFbS 2p

AJ22Jc1
2

1
2p

AJ22Jc2
2 D G21J 21

. ~37!

For Jc15Jc2 , Eq. ~36! reduces to Eq.~4!, as it should.
Analogous to Eq.~31!, Eq. ~36! can be also simplified in the limiting case of slow jumps between the potentials,b→0

~adiabatic approximation!:

^ẇ&;5 SAJ22~Jc1A2!2

b1
1

AJ22~Jc2B2!2

b2
D Y S 1

b1
1

1

b2
D , J.Jc1A2 and J.Jc2B2

SAJ22~Jc2B2!2

b2
D Y S 1

b1
1

1

b2
D , J,Jc1A2 and J.Jc2B2

0, J,Jc1A2 and J,Jc2B2.

~38!
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To gain a better understanding of the role of multiplic
tive noise, it would be useful to explore in further detail t
mechanical analogy of our basic equation~5!. We now re-
gard the critical currentJc as being a telegraph signal~di-
chotomous noise!, which jumps at random times between t
two fixed values,Jc1 and Jc2 . In terms of an overdampe
driven pendulum, a particle moves in the washboard po
tials V152Jw2Jc1 cos(w) andV252Jw2Jc2 cos(w). The
dynamics of the particle motion are fully defined by t
value of the driving forceJ. For J.Jc1 ,Jc2 , the motion
along both potentials is a continuous descent, and the mo
ity ^ẇ& is defined by both potentials. In the limiting case
very large J, according to Eq.~4!, one gets^ẇ&5J. If
Jc1,J,Jc2 , the motion downhill will be slower since th
continuous descent in the potential fieldV1 will be inter-
rupted by jumps to the second washboard potentialV2 ,
where, for some time, the motion will be represented
-

n-

il-

y

small oscillations near one of the minima ofV2 , before re-
turning to V1 . Finally, for J,Jc1 ,Jc2 , both motions com-
prise small oscillations around local minima, which mea
that ^ẇ&50.

The typical graphs of the voltage-current characteris
for multiplicative dichotomous noise are shown in Figs. 1,
and 6. The last two graphs show the voltage-current cha
terictic for different noise rates and amplitudes of the mu
plicative dichotomous noise, respectively. The nonmo
tonic behavior of the mobilitŷẇ& as a function of noise rate
b is shown in Fig. 7. Just as for additive noise, this stocha
resonance occurs in narrow region of the bias currentJ.

A few characteristic features of these graphs obtained
multiplicative noise should be mentioned, which are dist
guished from those shown in Figs. 1–4 for additive noise

~1! No ‘‘ratchet effects’’ exist for multiplicative noise
even when the latter is asymmetric.~One can show@20# that
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FIG. 5. Voltage-current characteristic of a Josephson junction subject to multiplicative dichotomous noise for different noise am
A2 . Parameters areJc51 andb51.
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the rachet effects occur for multiplicative noise when—
our notation—Jc1.0 but Jc2,0!. The vanishing of̂ ẇ& for
J50 can be seen not only from Fig. 5 but also from the fi
equation of ~32!, which for J50 can be rewritten as
W5(Y2Jc)sin(w). The flux W has to be constant in a sta
tionary state, which meansW50 and^ẇ&50.

~2! In contrast to rachets, the stochastic resonance p
nomenon exists for multiplicative dichotomous noise, just
for additive dichotomous noise~Fig. 7!.

~3! While the asymptotic form of the current-voltage cha
acteristic of a Josephson junction subject to additive no
obeys Ohm’s law, for multiplicative noise the asympto
differs from Ohm’s law, as one can see from Fig. 1. T
same results follow from our equations, namely,
J@Jc1 ,Jc2 , W5J^P&1^Y sin(w)&, and ^ẇ&5J
12p^Y sin(w)&, whereY(w) is to be found from Eqs.~32!.
t

e-
s

e

r

V. JOINT ACTION OF MULTIPLICATIVE
AND ADDITIVE NOISE

For the general case of both multiplicative and addit
noises, one has to solve Eq.~18!. The analytic treatment o
the general case is too cumbersome. Let us instead dis
the results for some simple cases.

White additive noise and very fast multiplicative
dichotomous noise

When the transition rateb of the multiplicative symmetric
(A5uBu) dichotomous noise is very large,b→`, the system
is subject to the average noise. This means that there i
multiplicative noise at all, i.e., the equation of motion~5! has
the following form:
FIG. 6. Same as Fig. 5 but for different values of noise ratesb. Parameters areJc51 andA25B250.9.
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FIG. 7. Voltage^ẇ& as a function of noise rateb for multiplicative dichotomous noise. Parameters areA25B250.9 andJc51.
r,

l

to
tia
n
.

m

in

se

nc-

d-

zed
dw

dt
5J2Jc sin w1 f 1~ t !, ~39!

wheref 1(t) is the white noise. The mobilitŷẇ& for Eq. ~39!
can be calculated exactly, yielding@23#

^ẇ&5
sinh~pJ/D !

p/D UI iJ/D

Jc

DU22

, ~40!

whereI iJ/D is the modified Bessel function of the first orde
with imaginary argument and imaginary index@24#. In the
limiting case whenJ,D!1, Eq. ~40! reduces to@see Eq.
~9.56! in Ref. @24##

^ẇ&52 sinh
pJ

D
expS 2

2Jc

D D . ~41!

Each of the two factors in Eq.~41! has a clear physica
meaning@25#. The Arrhenius exponential rate, exp(2 2Jc /D),
decreases withD, which makes it easier for a system
overcome a potential barrier, while the preexponen
factor—the difference between approach to the left well a
to the right well—makes the system more homogeneous

White additive noise and very slow multiplicative
dichotomous noise

For very slow processes,b→0, the total voltage is given
by the average of the two potentials@21#:

^ẇ&5
1

~b11b2!
@b2^w&J,Jc1

,D1b1^w&J,Jc2
,D#. ~42!

As shown in Ref.@21#, Eqs. ~40!–~42! define the non-
monotonic behavior of the currentW52p^ẇ& as a function
of b, manifesting itself by appearing in both the minimu
and the maximum on the graphs.
l
d

White additive noise and multiplicative noise

When both noises are white, the following limits apply
the general equations~20!–~23!: A1 ,A2 ,a,b→` with
lim A1

2/2a5D1 and lim A2
2/2b5D2 , which immediately

yields Eq.~24! for the probability density functionP(w) and,
finally, one obtains Eq.~28! for the voltagê ẇ&.

Figure 8 displayŝẇ& as a function ofJ when both noises
are white. It is remarkable that for weak additive noi
(D150.02) and strong multiplicative noise (D2510), the
voltage-current characteristic for smallJ climbs higher than
that predicted by Ohm’s law.

Multiplicative dichotomous noise and additive white noise

Analogous to the previous case, after excluding the fu
tionsX andZ from Eqs.~20!–~23!, one obtains the following
equations forP(w) andY(w):

bY1
d

dw
~gY!2D1

d2Y

dw2 1A2
2 d

dw
~P sin w!50, ~43!

W5gP2D1

dP

dw
1Y sin w. ~44!

After excludingY from these two equations, one gets a thir
order differential equation forP(w), which cannot be solved
analytically. The appropriate equations have been analy
numerically in Ref.@21#.

White multiplicative noise and dichotomous additive noise

Taking the limits A2 ,b→` such that limA2
2/2b5D2 ,

one obtains from Eqs.~22! and ~23!

Y52D2

d

dw
~P sin w!, Z52D2

d

dw
~X sin w!.

~45!
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FIG. 8. Voltage-current characteristic of Josephson junction subject to both additive and multiplicative white noises of strengthsD1 and
D2 , respectively (Jc51).
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Substitution of the latter formula into Eqs.~20! and ~21!
gives

aX1~gX!2A1
2 dP

dw
1D2

d

dw Fsin w
d

dw
~X sin w!G50,

~46!

W5gP1X2D2 sin w
d

dw
~P sin w!. ~47!

Again, the third-order differential equation forP(w),
which is obtained from these two equations, allows only
 a

numerical solution. This can be obtained in complete an
ogy with those performed in Ref.@21#.

Multiplicative dichotomous noise and additive
dichotomous noise

In this general case one has to solve the four equation
Eq. ~18!, which can be done only numerically. Results
numerical simulations are shown in Fig. 9 for simultaneo
action of symmetric additive and multiplicative dichotomo
noises. A few interesting comments are necessary:

~a! None of the noises has any influence on the curre
voltage characteristic forJ1A1,Jc ~additive noise! and for
FIG. 9. Voltage-current characteristic of a Josephson junction subject to additive dichotomous~dotted line!, multiplicative dichotomous
~dashed line!, and both noises~solid line!. The parameters have the following values :A15B15A25B250.5; a5b→0 ~adiabatic case!.
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FIG. 10. Voltage-current characteristic of a Josephson junction subject to nonsymmetric additive and symmetric multiplicative
mous noises as a function of noise rateg. The rateg defines the transitionA2→2B2 andvice versaas well as the transition2B1→A1 ,
while the rate of transition fromA1 to 2B1 is equal to 2g. The parameters have the following values:A150.9; B150.45; A25B250.5 and
Jc51.
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J,Jc2B1 ~multiplicative noise!, while the common action
of both noises changes the current-voltage character
even in these regions.

~b! The ‘‘ratchet effect’’ ~appearance of net voltage^ẇ&
in the absence of driving current,J50! exists for nonsym-
metric additive dichotomous noise even in the presence
symmetric multiplicative dichotomous noise, as one can
from Figs. 10 and 11. Moreover, multiplicative noise eas
the criteria for the onset of the ratchet effect. The conditio
J.A1 andJ.B1 that appear in the absence of multiplicati
tic

of
e
s
s

noise are no longer necessary when multiplicative noise
present.

VI. LIMIT CASES OF WEAK AND STRONG NOISE

In this section we develop a convenient means of anal
for some limiting cases of the formulas, we derived.

The generic equation~24!, which we use for the analysi
of different types of noise, is a first-order differential equ
tion with periodic coefficients of the following form:
e
FIG. 11. Voltagê ẇ& in the absence of the driving force,J50 ~‘‘ratchet effect’’! as a function of noise rateg. Parameters are the sam
as in Fig. 10.
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P5C~w!P81WF~w!5C~w!P81Q~w!, ~48!

where here and in the discussion that follows, the prime
notes the derivative with respect tow. In some cases the
functionsC~w! andF~w! have singularities, or the functio
C~w! vanishes at somew. In the latter case, one has to u
singular perturbation theory. However, the functionP(w)
must be periodic and normalized function ofw. We use this
fact to simplify some series expansions and approximatio

Let us integrate Eq.~48! over a period and continue inte
gration by parts on the right side of this equation:

15 R Q1 R CP85 R Q2 R QC82 R C8CP85••• .

~49!

If we define the operatorOC(w)[(Cw)8, we obtain

15 R Q@12OC~1!1OC„OC~1!…2•••#.

Taking into account thatWF(w)5Q(w), one can rewrite
this operator series in a more compact form

W5H R FS F 1

12OC
G~1! D J 21

~50!
e-

s.

or

W5
1

R F„12C81~CC8!82@C~CC8!#81•••…

.

~51!

This form of solution of Eq.~48! is very convenient when
the functionC~w! in Eq. ~48! vanishes at somew and one has
to use singular perturbation theory. However, such an exp
sion is not convenient when the coefficient in front ofP is
equal to zero. Then, the functionsF andC have singularities
and Eq.~50! is of no use. For these cases we use anot
representation of the solution for Eq.~48! by rewriting Eq.
~48! in the following form:

P82
Q~w!

D
P5WV~w!. ~52!

Using periodicity and normalization ofP yields the follow-
ing form of solution for the currentW:
e

W5F E
0

2p e~1/D ! *0
wQ~z!dz

e2 ~1/D ! *w
w12pQ~z!dz21

S E
w

w12p

V~j!e2 ~1/D ! *0
jQ~z!dzdj D dwG21

. ~53!

If Q is a periodic function plus constant, the value of*w
w12pQ(z)dz will not depend onw, and the last integral reduces to som

constantk. Then Eq.~53! is simplified,

W5~e2 k/D21!F E
0

2p

e~1/D ! *0
wQ~z!dzS E

w

w12p

V~j!e2 ~1/D ! *0
jQ~z!dzdj D dwG21

. ~54!

In the limit of D→0, one can use the method of steepest descent for calculating the integrals in Eqs.~53! and~54!, which gives

W5
~e2 k/D21!AuQ8~x1!Q8~x2!u

2pDV~x2!
e~1/D ! *

x1

x2Q~z!dz, ~55!

wherex1 andx2 are two neighboring zeros ofQ(x), wherex2.x1 , andQ8(x1),0, Q8(x2).0. Note that Eq.~55! cannot be
expanded in series, in contrast to Eq.~50!. Finally, since (e2 k/D21)'21 for D→0, one obtains

W52
AuQ8~x1!Q8~x2!u

2pDV~x2!
e~1/D ! *

x1

x2Q~z!dz. ~56!

If Q(z) is of order zero inD, one can also consider the opposite limiting case ofD→`, rewriting Eq.~54! in the form

W5(
t51

` F2
k

DG tF (
n,m50

` E
0

2pF 1

D E
0

w

Q~z!dzGmS E
w

w12p

V~j!F2
1

D E
0

j

Q~z!dzGn

dj D dwG21

. ~57!
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Equation~57! gives the expansion of the currentW for
largeD. If Q is a periodic function plus some constant, t
first term of this expansion is

W;2
*0

2pQ~z!dz

2pD*0
2pV~z!dz

. ~58!

Applications of the derived formulas will be illustrated b
the examples of one and two white noises.

White additive noise

The general formula~28! can be simplified for weak and
strong noise strengths. ForD→`, one obtains

^ẇ&;JS 12
Jc

2

2D2 1
Jc

2~16J215Jc
2!

32D4 1••• D . ~59!

Notice that the correction terms are proportional to (Jc /D)2,
which means that for large additive white noise, the corr
tion terms to Ohm’s law,̂ ẇ&;J, are very small.

The voltage-current characteristic is of greatest inte
for weak noise. Following the general approach given at
beginning of this section, forD→0, all calculations have to
be separated into two parts. In the caseJ.Jc , we can use
Eq. ~50! to obtain the first correction to Eq.~4!:

^ẇ&;AJ22Jc
21D2Jc

2
Jc

214J2

8~J22Jc
2!5/21••• for J.Jc .

~60!

Equation~60! contains corrections to Eq.~4! that are propor-
tional to (DJc)

2, similar to the corrections of order (Jc /D)2

in Eq. ~59!. However, the situation is quite different fo
J,Jc . We now have to use Eqs.~55! and ~56!, rather than
Eq. ~50!. In terms of the characteristic frequencies

v15AJc
22J2, v252@v12J arccos~J/Jc!# ~61!

the weak noise correction is

^ẇ&;v1e2 v2 /D for J,Jc . ~62!

Note that Eq.~62! has been obtained under the condition
small D, so thatJ andJc are larger thanD. For J,D, Eq.
~62! gives an incorrect result whereas the correct resul
^ẇ&.0.

We conclude, therefore, that in two regions,J,Jc and
J.Jc , the corrections for smallD have different forms,
changing from an exponential form~62! to a polynomial
form ~60!. Such behavior of the solution of the nonline
equation~1! is a manifestation of the change from flow-typ
motion to Arrhenius-type jumps.

White additive noise and multiplicative noise

Analogous to the calculations performed above, one
find the limiting forms of Eqs.~27! for small and large noise
strengthsD1 and D2 . For small D, the corrections have
different forms in the two regionsJ,Jc andJ.Jc . For J.
Jc ~‘‘the flow region’’!
-

st
e

f

is

n

^ẇ&;AJ22Jc
2

1D2
Jc

414J2Jc
21R2J4110RJ2Jc

214R2J2Jc
2

8~J22Jc
2!5/2 ,

~63!

whereD25RD1 , andR is assumed to be of order unity.
For the Arrhenius region,J,Jc , the smallD corrections

to the voltage-current characteristic have the following for

^ẇ&;v1e2 ~2J/DA11R!arctan~JA11R/v1!F11j

12j G2 b/DAR~11R!

,

~64!

wherev1 andj are defined by

v15AJc
22J2,

j5A R

R11

v1

Jc
. ~65!

Several differences between Eqs.~63! and ~64! and the ap-
propriate equations~60! and ~62! in the absence of the mul
tiplicative noise are worthy of notice.

Firstly, the boundary between the flow region and t
Arrhenius region, which in the former case was simply d
fined byJ5Jc , becomes more complicated and, in fact, t
boundary between the applicability of Eqs.~63! and ~64! is
defined byJ2Jc sin(w)2 (DR/2)sin(2w)50. The second dif-
ference between Eqs.~60! and~63! is that in the latter equa
tion the correction terms do not vanish forJc→0, which may
have much to do with the presence of multiplicative noi
One can also find the limiting form of Eq.~27! for large
noise strength,D→`:

^ẇ&;
p2J

4A11R@*0
pdx/A11R sin2~x!#2

. ~66!

One can see from this equation that the current-volt
characteristic is changing drastically due to the presenc
multiplicative white noise. Instead of small corrections
Ohm’s law due to additive white noise, Eq.~59!, multiplica-
tive noise leads to significant changes even in leading or
This change can be essential for large values ofR. For ex-
ample, for R5500, the influence of multiplicative nois
leads tô ẇ&;2.37J, which explain the strong slope in Fig.
for D150.02 andD2510. For smaller values ofR, the slope
is approaching that of Ohm’s law, and finally, forR50, we
come back to Ohm’s law.

VII. CONCLUSIONS

Our main results concern the voltage-current characte
tics of a Josephson junction subject to additive and multi
cative noises, which we have chosen as dichotomous no
although in the Appendix we present the Fokker-Plan
equations for the more general case of exponentially co
lated noises. Results of our investigation can be summar
in the following way:
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Multiplicative noise alone „random distribution of critical
currents or some other external noises…

~a! We obtained an analytic solution for the voltag
current characteristic@Eq. ~40!#.

~b! Asymptotic behavior of the voltage-current charact
istic for J→` is different from Ohm’s law~Fig. 1!.

~c! The voltage increases with noise amplitude for sm
currents. However, for larger currents, the voltage decrea
with noise amplitude~Fig. 5!.

~d! Near this transient region, the voltage turns out to b
nonmonotonic function of the noise rate~Fig. 7!, which is
one of the manifestations of stochastic resonance.

~e! In contrast to additive noise, even nonsymmetric m
tiplicative noise is unable to produce the ‘‘ratchet effec
~net voltage in the absence of biased current!.

Additive noise alone„thermal or some other internal noise…

This case was analyzed previously@1,6–8#. We consid-
ered a relationship between the form of the current-volt
characteristic and noise rate and amplitude, and found
following.

~a! The voltage-current characteristics for different no
rates are confined between the two limits of fast and s
noises~Fig. 2! and occupy a small amount of space betwe
the voltage-current characteristics of two separate states.
latter ~adiabatic! case can be calculated analytically@Eq.
~31!#.

~b! The stochastic resonance~the nonmonotonic behavio
of voltage as a function of noise rate! occurs in a wider range
of currents than that for multiplicative noise~Figs. 2 and 3!.

~c! Just as for multiplicative noise, the voltage increas
with noise amplitude for small current and decreases
large current~Fig. 3!.

Simultaneous action of additive and multiplicative noises

~a! Two dichotomous noises are able to produce volta
for small currents~Fig. 9! while each by itself is unable to
give non-zero voltage in this region of current.

~b! The cooperative effect mentioned above occurs a
for two white noises. Moreover, the resulting voltage can
larger than that in Ohm’s law if the additive noise is we
and the multiplicative noise is strong~Fig. 8!.

~c! The simultaneous action of two noises can be lar
than each by itself in some region of the voltage-curr
characteristic, but smaller in other regions.

~d! The ‘‘ratchet effect’’ occurs for nonsymmetric add
tive noise in the presence of multiplicative noise~Figs. 10
and 11!. The latter eases the requirments for the onse
ratchets.

Analysis of limiting cases of weak and strong noises

~a! We suggested a convenient method of analysis
these limiting cases when the Fokker-Planck equations c
tain singularities.

~b! The small-D corrections to the voltage generated
additive noise have a polynomial form in the flow-type r
gion, J.Jc , and an exponential form in the Arrhenius-typ
region,J,Jc .

~c! The same effect occurs when both additive and mu
plicative white noises are present, with the boundary
-
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tween the flow-type and Arrhenius-type regions shifted
J,Jc .

APPENDIX

Here we present a slightly more general set of stocha
equations corresponding to the Langevin equation~5! for any
two independent exponentially correlated zero-mean nois

^ f i~ t ! f i~ t8!&5s i
2 exp@2l i ut2t8u#, ~A1!

^ f i~ t !&50, ~A2!

^ f 1~ t ! f 2~ t8!&50. ~A3!

The probability density functionP(w,t) is defined as the
statistical average of the Dirac functio
r(w,t)5d(w2w(t)), namely, P(w,t)5^r(w,t)& @19#.
Then, the stochastic Liouville equation has the followi
form:

]r

]t
52

]

]w
$@g~w!1 f 12 f 2 sin~w!#r%, ~A4!

where g(w) was defined in Eq.~16!, and the appropriate
Fokker-Planck equation is

Ṗ52
]

]w
@g~w!P1^r f 1&2^r f 2&sin~w!#. ~A5!

Multiplying Eq. ~A4! by f 1 , f 2 and f 1f 2 , respectively, and
averaging the resulting equations, one obtains the Fok
Planck equations for the functions,

X5^r f 1&, Y5^r f 2&, Z5^r f 1f 2&. ~A6!

The time derivatives of these functions, which appear
the left-hand side of the Fokker-Planck equations, can
simplified for the random functions~A1! by use of the well-
known Shapiro-Logunov formula@16#:

]

]t
^a~ t !w@a#&5 K a~ t !

d

dt
w@a#L 2l^a~ t !w@a#&,

~A7!

wherew@a# is a functional of the random valuea(t), and the
average is performed over the distribution ofa(t).

Finally, we come to the following set of equations:

Ṗ52@Pg~w!1X2Y sin~w!#8,

Ẋ52l1X2@g~w!X1^r f 1
2&2Z sin~w!#8,

Ẏ52l2Y2@g~w!Y2^r f 2
2&sin~w!1Z#8,

Ż52~l11l2!Z2@g~w!Z1^r f 1
2f 2&2^r f 1f 2

2&sin~w!#8.
~A8!

The system of equations~A8! contains the average
^r f 1

2f 2& and^r f 1f 2
2& and, therefore, this system is not close

One has to use some decoupling procedure. Another po
bility that we demonsrate in this work is to consider t
special case of the two-state Markov process. For symme
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dichotomous noisef 1
2(t)5A1

2 and f 2
2(t)5A2

2 and Eq.~A8!
reduces to Eqs.~20!–~23!. For nonsymmetric dichotomou
noise one can easily obtain

^r f 1
2&5A1B1P1~A12B1!X,

^r f 2
2&5A2B2P1~A22B2!Y,
e

v.

s

ys

n,

ke

A

ys
^r f 1
2f 2&5A1B1Y1~A12B1!Z,

^r f 2
2f 1&5A2B2X1~A22B2!Z. ~A9!

Substitution of Eq.~A9! into Eq. ~A8! gives Eq.~18!.
ics
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